S ep 2 00 6 Gravity and the Noncommutative Residue for Manifolds with Boundary ∗

نویسنده

  • Yong Wang
چکیده

We prove a Kastler-Kalau-Walze type theorem for the Dirac operator and the signature operator for 3, 4-dimensional manifolds with boundary. As a corollary, we give two kinds of operator theoretic explanations of the gravitational action in the case of 4-dimensional manifolds with flat boundary. Subj. Class.: Noncommutative global analysis; Noncommutative differential geometry. MSC: 58G20; 53A30; 46L87

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

S ep 2 00 6 Differential Forms and the Wodzicki Residue for Manifolds with Boundary ∗

In [3], Connes found a conformal invariant using Wodzicki’s 1-density and computed it in the case of 4-dimensional manifold without boundary. In [14], Ugalde generalized the Connes’ result to n-dimensional manifold without boundary. In this paper, we generalize the results of [3] and [14] to the case of manifolds with boundary. Subj. Class.: Noncommutative global analysis; Noncommutative differ...

متن کامل

Noncommutative Residues, Dixmier’s Trace, and Heat Trace Expansions on Manifolds with Boundary

For manifolds with boundary, we define an extension of Wodzicki’s noncommutative residue to boundary value problems in Boutet de Monvel’s calculus. We show that this residue can be recovered with the help of heat kernel expansions and explore its relation to Dixmier’s trace.

متن کامل

ar X iv : h ep - t h / 06 05 27 5 v 1 2 9 M ay 2 00 6 Second Order Noncommutative Corrections to Gravity

In this work, we calculate the leading order corrections to general relativity formulated on a canonical noncommutative spacetime. These corrections appear in the second order of the expansion in theta. First order corrections can only appear in the gravity-matter interactions. Some implications are briefly discussed. [email protected] [email protected]

متن کامل

Trace Expansions and the Noncommutative Residue for Manifolds with Boundary

For a pseudodifferential boundary operator A of order ν ∈ Z and class 0 (in the Boutet de Monvel calculus) on a compact n-dimensional manifold with boundary, we consider the function Tr(AB−s), where B is an auxiliary system formed of the Dirichlet realization of a second order strongly elliptic differential operator and an elliptic operator on the boundary. We prove that Tr(AB−s) has a meromorp...

متن کامل

ar X iv : h ep - t h / 00 05 02 6 v 2 2 6 M ay 2 00 0 UG - 00 - 01 A Noncommutative M – Theory Five – brane

We investigate, in a certain decoupling limit, the effect of having a constant C– field on the M–theory five–brane using an open membrane probe. We define an open membrane metric for the five–brane that remains non–degenerate in the limit. The canonical quantisation of the open membrane boundary leads to a noncommutative loop space which is a functional analogue of the noncommutative geometry t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006